

Embodied Carbon in High Performance Walls June 2022

BDP. Quadrangle

t 416 598 1240 www.bdpquadrangle.com

Quadrangle Architects Limited 901 King Street West, Suite 701 Toronto, ON M5V 3H5

1.0 INTRODUCTION

This carbon emissions study was prepared by BDP Quadrangle to understand the environmental impacts of potential high performance exterior wall assemblies.

1.1 Summary

BDP Quadrangle has committed, under the Sustainability Strategy Decarbonization Roadmap, to a 40% reduction in embodied carbon for all projects completed in the office by 2030. The building envelope will be a critical part of this reduction as it accounts for roughly 30% of the embodied carbon in a multi-unit residential building. Any opportunity to reduce carbon emissions within the building envelope must consider both the impacts to the operational and embodied carbon, especially when considering high performing alternatives. Using a ratio of thermal performance (RSI) and global warming potential (GWP) we can begin to evaluate the overall carbon intensity of each wall assembly. The lower the ratio, the lower its carbon impact.

This report investigates the relative impact of six high-performance wall assemblies. Each of these wall assemblies were developed as potential solutions to achieve a high thermal resistance for a project targeting the Zero Carbon Building Standard through the Canadian Green Building Council (CaBGC).

1.2 Methodology

OneClick LCA was used to access Environmental Product Declarations (EPDs) to find the GWP of each assembly. GWP

values are expressed in units of carbon dioxide mass equivalent (kg CO2e, in which all GHGs are converted to the impact of CO2).

1.2 Findings

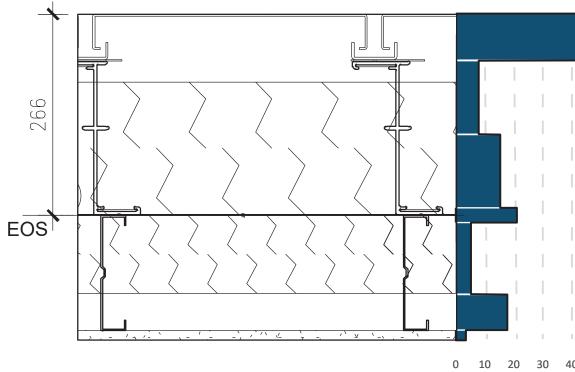
The results varied significantly from a high of 217 kg c02e/m² to a low of 84 kg c02e/m². In the study each material within the assembly was calculated separately so high-emission materials could be identified.

In the Toronto Multi-unit Residential sector, pre-finished aluminum cladding is the most common. For this reason, the study used this as a baseline cladding for the relevant assemblies. As indicated by the analysis on page 11, this cladding is the highest emitting cladding material of the EPDs compared. The assumption that this cladding is a industry standard should be challenged.

Page 9 and 10 show a comparison of these systems both with the baseline cladding and with a lower GWP alternative. By substituting the aluminium panel for a lower emission material the *GWP* : *RSI* ratio is greatly reduced for all assemblies except the precast concrete types. With this change the *Built-up Wall System* becomes the assembly with the lowest ratio at 11:1.

BDP. Quadrangle

2


2.0 WALL ASSEMBLIES

Large Format Prefabricated Panel 2.1

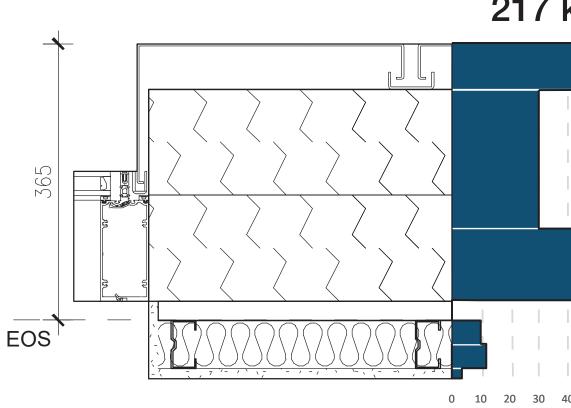
3mm	Prefinished aluminium panel system c/w panel
	frame and wall clips
25mm	Air space
203mm	Greengirts (8") @ 600mm OC
175mm	Semi-rigid mineral wool insulation (RSI + 5.25)
1mm	GALV steel sheet
100mm	Semi-rigid mineral wool insulation (RSI = 3.0)
152mm	GLAV structural steel studs @ 400mm OC)
13mm	GWB

Thickness = 431mm

Nominal RSI = 8.25 (R = 46.8)

TOTAL GWP (kg CO2e) per m2	154
Effective RSI =	3.34
GWP : RSI	46.2 : 1

154 kg CO2e/m2


	I	I	I	I	I	I	I.	I
10	50	60	70	80	90	100	110	120

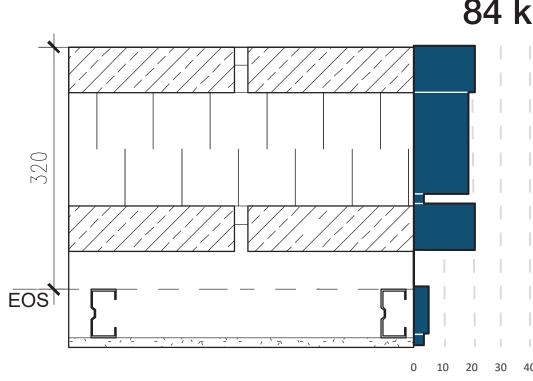
2.2 High Performance Curtainwall System

3mm	Prefinished aluminium panel system c/w panel
	frame and wall clips
280mm	Semi-rigid Mineral wool issulation (RSI = 8.25)
203mm	Curtain wall system (203mm mullion)
3mm	GALV steel backpan (not included in carbon calc.)
64mm	Fiberglass batt insulation (RSI = 1.5)
64mm	GALV structural steel studs @ 400mm ON
13mm	GWB

Thickness = 442mm

Nominal RSI = 9.75 (R = 55)

TOTAL GWP (kg CO2e) per m2	217
Effective RSI =	6.16
GWP : RSI	35.2 : 1


217 kg CO2e/m2

						1.		
10	50	60	70	80	90	100	110	120

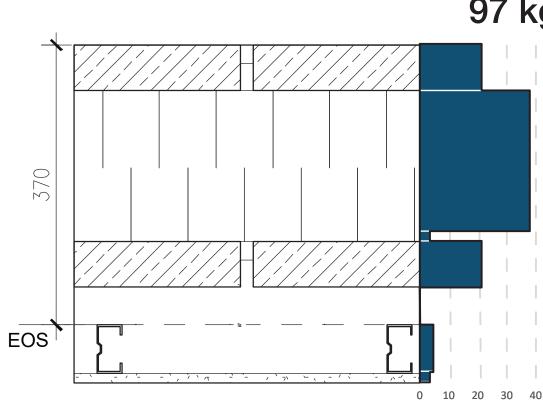
2.3 Modular Precast System - Phenolic

60mm	Architectural precast concrete panel
150mm	K20 Phenolic insulation (RSI = 8.8)
-	GRFP ties between wythes
60mm	Architectural precast concrete panel
50mm	Air space
64mm	GLAV structural steel studs @ 400mm OC
13mm	GWB

Thickness = 397mm Nominal RSI = 8.8 (R = 49.8)

TOTAL GWP (kg CO2e) per m2	84
Effective RSI =	6.69
GWP : RSI	12.6 : 1

BDP. Quadrangle


84 kg CO2e/m2

1		I			I		L	L
10	50	60	70	80	90	100	110	120

2.4 Modular Precast System - Polyiso

60mm	Architectural precast concrete panel
200mm	Polyiso insulation (RSI $= 8.9$)
-	GRFP ties between wythes
60mm	Architectural precast concrete panel
50mm	Air space
64mm	GLAV structural steel studs @ 400mm OC
13mm	GWB

Thickness = 477mm Nominal RSI = 8.9 (R = 51)

TOTAL GWP (kg CO2e) per m2
Effective RSI =
GWP : RSI

BDP. Quadrangle

97 kg CO2e/m2

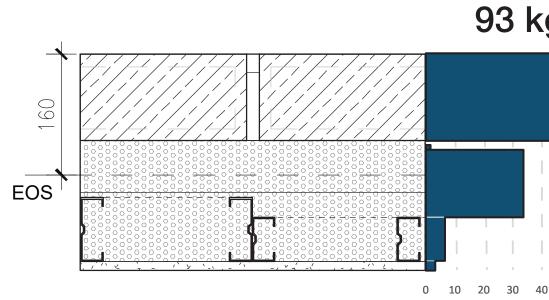
100 110 120

97
6.69
14.6:1

50

60

70


90

2.5 Architectural Precast Concrete at Steel Stud Backup

125mm	Architectural precast concrete panel, two-stage
	joint seal
175mm	75+100mm closed cell polyurethane spray foam
	(RSI = 7.04)
-	92mm or 64mm steel studs @ 400mm OC
-	(partially embeded into spray foam)
-	(92mm steel studs around window wall)
13mm	GWB

Thickness = 286mm

Nominal RSI = 7.04 (R = 40)

TOTAL GWP (kg CO2e) per m2	93
Effective RSI =	5.46
GWP : RSI	17 : 1

g CO2e/m2								
	1		1		1		1	
0	50	60	70	80	90	100	110	120

2.6 Aluminium Architectural Cladding, Steel Stud Backup

3mm	Prefinished aluminium panel system c/w panel				
	frame and wall clips				
25mm	Vertical GALV Z-girts or horizontal hat-track (as				
	required)				
203mm	Fiberglass thermal spacer clips				
100mm	Semi-rigid mineral wool insulation (RSI = 3.0)				
100mm	Semi-rigid mineral wool insulation (RSI = 3.0)				
13mm	Exterior sheathing				
152mm	GALV structural steel studs @ 400mm OC				
13mm	GWB				

Thickness = 417mm

Nominal RSI = 6.0 (R = 34.0)

134 kg CO2e/m2 244 EOS 0 10 20 30 40

TOTAL GWP (kg CO2e) per m2	134
Effective RSI =	5.81
GWP : RSI	23 : 1

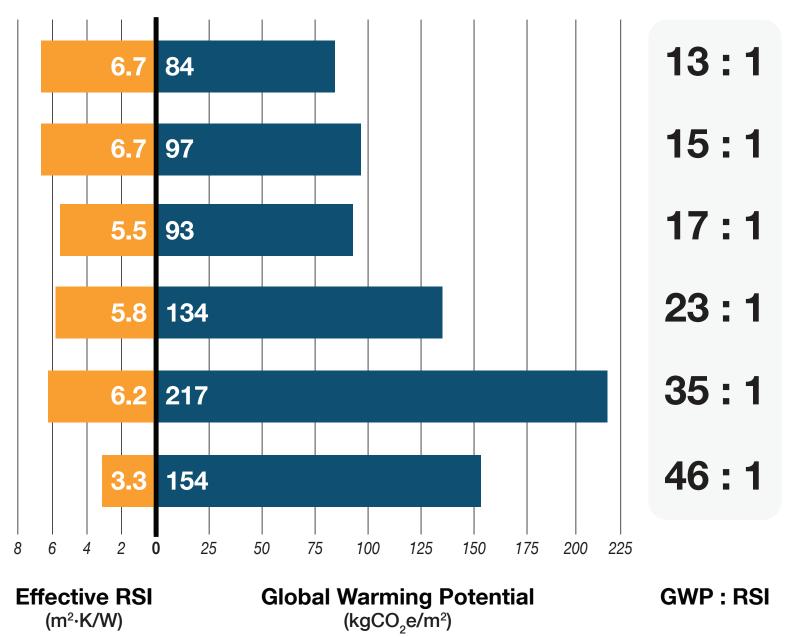
1									
10	50	60	70	80	90	100	110	120	

3.0 COMPARATIVE ANALYSIS

3.1 Systems Comparison - with Baseline Cladding

Using a ratio of thermal performance (RSI) and global warming potential (GWP) we can begin to evaluate the overall carbon intensity of each wall assembly. The lower the ratio, the lower its carbon impact. The ratio range varies significantly from 13:1 to 46:1.

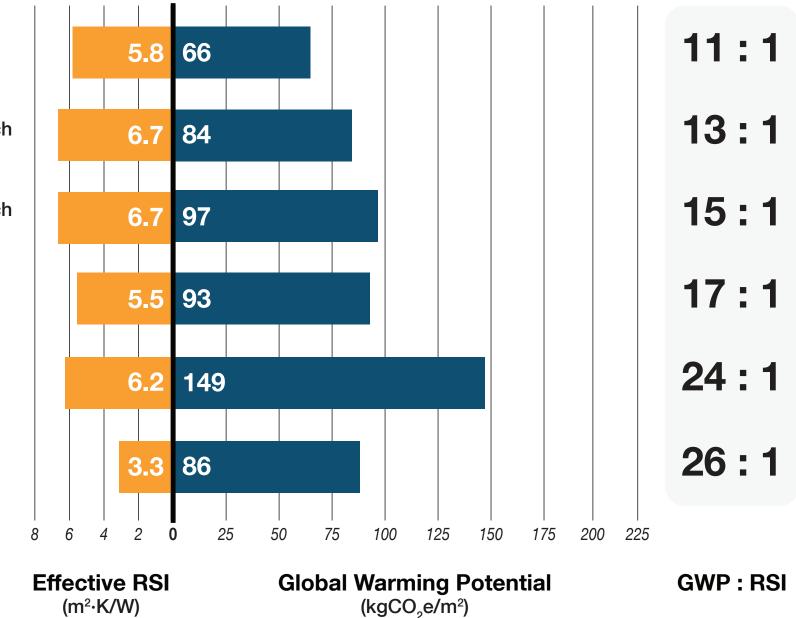
Architectural Precast Sandwich Panel - Phenolic Insulation


Architectural Precast Sandwich Panel - Polyiso Insulation

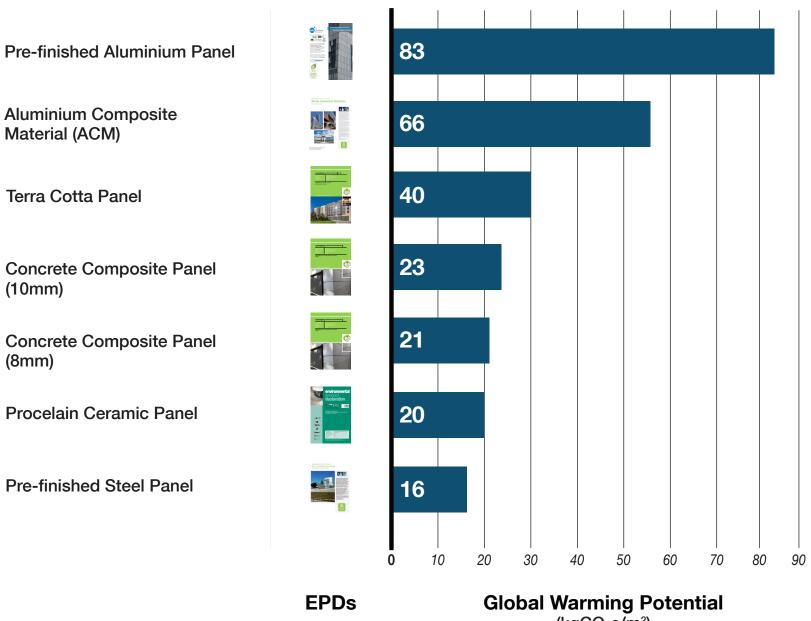
Architectural Precast with Spray Foam Insulation

Built-up Wall System

High Performance Curtainwall System


Large Format Prefabricated Panel

3.2 Systems Comparison - with Prefinished Steel Panel Cladding


By substituting the aluminium panel for a lower emission material the *GWP* : *RSI* ratio is greatly reduced for all assemblies except the precast concrete types. With this change the *Built-up Wall System* becomes the assembly with the lowest ratio at 11:1.

Built-up Wall System
Architectural Precast Sandwich Panel - Phenolic Insulation
Architectural Precast Sandwich Panel - Polyiso Insulation
Architectural Precast with Spray Foam Insulation
High Performance Curtainwall System
Large Format Prefabricated Panel

Material Carbon Emission of Cladding Only 3.3

Any of these cladding materials can be substituted for the pre-finished aluminum cladding. They range significantly in value from 16 kg c02e/m² to 83 kg c02e/m² which can make a significant different to a cladding system.

 $(kgCO_2e/m^2)$

BDP. Quadrangle

Material Carbon Emission of Cladding Only